负载均衡算法


负载平衡(Load balancing)是一种计算机技术,用来在多个计算机(计算机集群)、网络连接、CPU、磁盘驱动器或其他资源中分配负载,以达到最优化资源使用、最大化吞吐率、最小化响应时间、同时避免过载的目的。 使用带有负载平衡的多个服务器组件,取代单一的组件,可以通过冗余提高可靠性。负载平衡服务通常是由专用软件和硬件来完成。 主要作用是将大量作业合理地分摊到多个操作单元上进行执行,用于解决互联网架构中的高并发和高可用的问题。

                                                  ———摘自《维基百科》



### 轮询(Round Robin) ```java

<br/>
### 加权轮询(Weight Round Robin)
```java
public class RoundRobinLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "roundrobin";

    private final ConcurrentMap<String, AtomicPositiveInteger> sequences = new ConcurrentHashMap<String, AtomicPositiveInteger>();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int length = invokers.size(); // 总个数
        int maxWeight = 0; // 最大权重
        int minWeight = Integer.MAX_VALUE; // 最小权重
        final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
        int weightSum = 0;
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            maxWeight = Math.max(maxWeight, weight); // 累计最大权重
            minWeight = Math.min(minWeight, weight); // 累计最小权重
            if (weight > 0) {
                invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
                weightSum += weight;
            }
        }
        AtomicPositiveInteger sequence = sequences.get(key);
        if (sequence == null) {
            sequences.putIfAbsent(key, new AtomicPositiveInteger());
            sequence = sequences.get(key);
        }
        int currentSequence = sequence.getAndIncrement();
        if (maxWeight > 0 && minWeight < maxWeight) { // 权重不一样
            int mod = currentSequence % weightSum;
            for (int i = 0; i < maxWeight; i++) {
                for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
                    final Invoker<T> k = each.getKey();
                    final IntegerWrapper v = each.getValue();
                    if (mod == 0 && v.getValue() > 0) {
                        return k;
                    }
                    if (v.getValue() > 0) {
                        v.decrement();
                        mod--;
                    }
                }
            }
        }
        // 取模轮循
        return invokers.get(currentSequence % length);
    }

    private static final class IntegerWrapper {
        private int value;

        public IntegerWrapper(int value) {
            this.value = value;
        }

        public int getValue() {
            return value;
        }

        public void setValue(int value) {
            this.value = value;
        }

        public void decrement() {
            this.value--;
        }
    }

}

### 随机(Random) ```java


<br/>
### 加权随机(Weight Random)
```java
public class RandomLoadBalance extends AbstractLoadBalance {

    private final Random random = new Random();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, Invocation invocation) {
        int length = invokers.size(); // 总个数
        int totalWeight = 0; // 总权重
        boolean sameWeight = true; // 权重是否都一样
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            totalWeight += weight; // 累计总权重
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false; // 计算所有权重是否一样
            }
        }
        if (totalWeight > 0 && !sameWeight) {
            // 如果权重不相同且权重大于0则按总权重数随机
            int offset = random.nextInt(totalWeight);
            // 并确定随机值落在哪个片断上
            for (int i = 0; i < length; i++) {
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    return invokers.get(i);
                }
            }
        }
        // 如果权重相同或权重为0则均等随机
        return invokers.get(random.nextInt(length));
    }

}

### 源地址哈希(Hash) ```java

<br/>
### 一致性哈希(ConsistentHash)
```java
public class ConsistentHashLoadBalance extends AbstractLoadBalance {

    private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>();

    @SuppressWarnings("unchecked")
    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int identityHashCode = System.identityHashCode(invokers);
        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
        if (selector == null || selector.identityHashCode != identityHashCode) {
            selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode));
            selector = (ConsistentHashSelector<T>) selectors.get(key);
        }
        return selector.select(invocation);
    }

    private static final class ConsistentHashSelector<T> {

        private final TreeMap<Long, Invoker<T>> virtualInvokers;

        private final int replicaNumber;

        private final int identityHashCode;

        private final int[] argumentIndex;

        ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = identityHashCode;
            URL url = invokers.get(0).getUrl();
            this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
            String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                String address = invoker.getUrl().getAddress();
                for (int i = 0; i < replicaNumber / 4; i++) {
                    byte[] digest = md5(address + i);
                    for (int h = 0; h < 4; h++) {
                        long m = hash(digest, h);
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }

        public Invoker<T> select(Invocation invocation) {
            String key = toKey(invocation.getArguments());
            byte[] digest = md5(key);
            return selectForKey(hash(digest, 0));
        }

        private String toKey(Object[] args) {
            StringBuilder buf = new StringBuilder();
            for (int i : argumentIndex) {
                if (i >= 0 && i < args.length) {
                    buf.append(args[i]);
                }
            }
            return buf.toString();
        }

        private Invoker<T> selectForKey(long hash) {
            Invoker<T> invoker;
            Long key = hash;
            if (!virtualInvokers.containsKey(key)) {
                SortedMap<Long, Invoker<T>> tailMap = virtualInvokers.tailMap(key);
                if (tailMap.isEmpty()) {
                    key = virtualInvokers.firstKey();
                } else {
                    key = tailMap.firstKey();
                }
            }
            invoker = virtualInvokers.get(key);
            return invoker;
        }

        private long hash(byte[] digest, int number) {
            return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                    | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                    | ((long) (digest[1 + number * 4] & 0xFF) << 8)
                    | (digest[number * 4] & 0xFF))
                    & 0xFFFFFFFFL;
        }

        private byte[] md5(String value) {
            MessageDigest md5;
            try {
                md5 = MessageDigest.getInstance("MD5");
            } catch (NoSuchAlgorithmException e) {
                throw new IllegalStateException(e.getMessage(), e);
            }
            md5.reset();
            byte[] bytes;
            try {
                bytes = value.getBytes("UTF-8");
            } catch (UnsupportedEncodingException e) {
                throw new IllegalStateException(e.getMessage(), e);
            }
            md5.update(bytes);
            return md5.digest();
        }

    }

}

### 最小连接数(Least Connections) ```java public class LeastActiveLoadBalance extends AbstractLoadBalance {
public static final String NAME = "leastactive";

private final Random random = new Random();

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
    int length = invokers.size(); // 总个数
    int leastActive = -1; // 最小的活跃数
    int leastCount = 0; // 相同最小活跃数的个数
    int[] leastIndexs = new int[length]; // 相同最小活跃数的下标
    int totalWeight = 0; // 总权重
    int firstWeight = 0; // 第一个权重,用于于计算是否相同
    boolean sameWeight = true; // 是否所有权重相同
    for (int i = 0; i < length; i++) {
        Invoker<T> invoker = invokers.get(i);
        int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // 活跃数
        int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 权重
        if (leastActive == -1 || active < leastActive) { // 发现更小的活跃数,重新开始
            leastActive = active; // 记录最小活跃数
            leastCount = 1; // 重新统计相同最小活跃数的个数
            leastIndexs[0] = i; // 重新记录最小活跃数下标
            totalWeight = weight; // 重新累计总权重
            firstWeight = weight; // 记录第一个权重
            sameWeight = true; // 还原权重相同标识
        } else if (active == leastActive) { // 累计相同最小的活跃数
            leastIndexs[leastCount++] = i; // 累计相同最小活跃数下标
            totalWeight += weight; // 累计总权重
            // 判断所有权重是否一样
            if (sameWeight && i > 0
                    && weight != firstWeight) {
                sameWeight = false;
            }
        }
    }
    // assert(leastCount > 0)
    if (leastCount == 1) {
        // 如果只有一个最小则直接返回
        return invokers.get(leastIndexs[0]);
    }
    if (!sameWeight && totalWeight > 0) {
        // 如果权重不相同且权重大于0则按总权重数随机
        int offsetWeight = random.nextInt(totalWeight);
        // 并确定随机值落在哪个片断上
        for (int i = 0; i < leastCount; i++) {
            int leastIndex = leastIndexs[i];
            offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
            if (offsetWeight <= 0)
                return invokers.get(leastIndex);
        }
    }
    // 如果权重相同或权重为0则均等随机
    return invokers.get(leastIndexs[random.nextInt(leastCount)]);
}

}




<br/>
<!-- ### 低并发优先(Active Weight)
```java

``` -->




<br/>



---
参考
wikipedia-负载均衡:https://en.wikipedia.org/wiki/Load_balancing_(computing)

文章作者: Gumihoy
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Gumihoy !
评论
 上一篇
机器学习 机器学习
机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发
2018-11-21
下一篇 
  目录